Das Kunststoff-Zentrum

Injection Moulding at SKZ

DAkkS

Deutsche

Akkreditierungsstelle D-PL-19033-01-00

D-ZM-17265-01-00 D-IS-19033-01-00 100

ALLIANZ

INDUSTRIE

FORSCHUNG

- Moulding Machines & Technologies -

Dipl.-Ing. (FH) Christian Deubel

11-2023

2USE-GEMEINSCHAFT

The enabler -

for the plastics industry

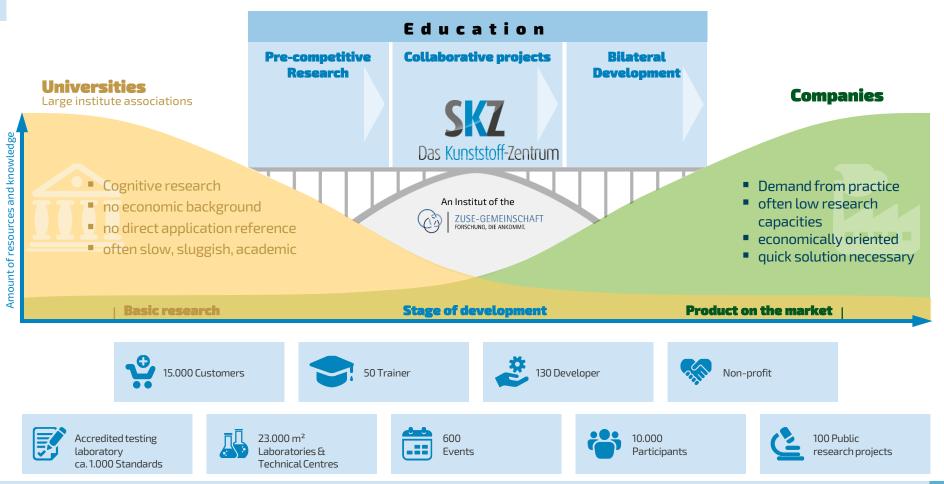
Founded 1961 in Würzburg

More than 430 employees

More than 400 members in the network

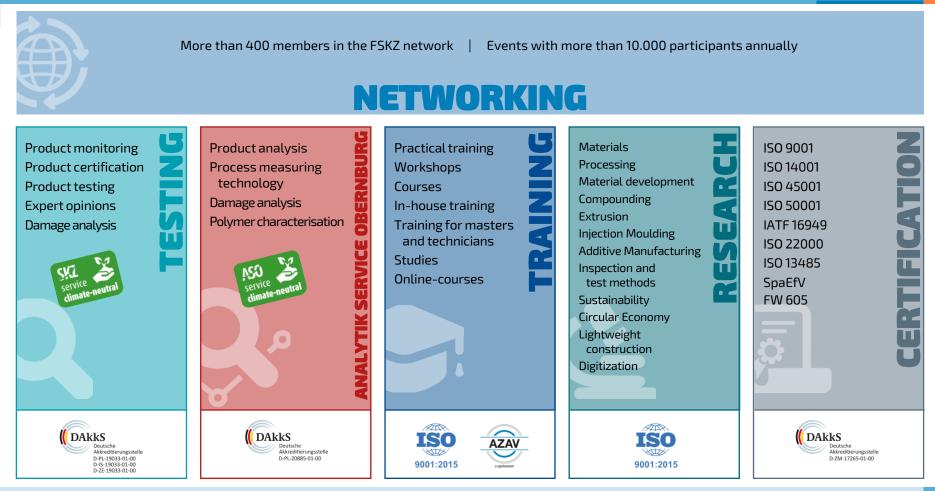
Member of the AiF and the Zuse Association

Accredited for testing, monitoring and certification



The enabler

for the plastic industry



Overview

of the business fields

Industrial-Service Units in SKZ

 Material development Material/Additive Searches Formulation development Specifications, 	 Surfaces Surface pre-treatment/activation (Plasma, Corona, VUV) Surface Characterization
 Compounding & Compounding Processes Modification of thermoplastics, incorporation of additives Manufacture of customer-specific materials Processing Extrusion (Profiles, tubes, foils) 	 Testing's & Analyses Mechanical tests (static, dynamic) Creep tests Thermal analysis Spectroscopic analyses Chemical analyses Weathering/Storage Tests Microscopy, SEM and CT measurements
 Injection moulding → Manufacture of test specimens → Manufacture of components → Material/mould sampling → Simulations Joining (therm. joining, US welding, gluing) Thermoforming Blow moulding 3D Printing (Thermoplastics & Resins) 	Other Areas - Sustainability & Circular Economy - Digitisation - Non-destructive testing - Reactive Systems / Crosslinking Materials - Dispersion process, resin development - Micro/nanosuspensions

Injection Moulding

at a glance

	dustrial orders per year Parch, Indus	More than 150 co		going research projects
More than 10 injection moulding machines with clamping force of 500 – 5,000 kN Multi-component injection moulding Thermoplastic Foam Injection Moulding ARBURG FDC , Processing of long fibres Processing of thermosets Processing of LSR Industry 4.0 Injection Moulding Cell Colouring with Masterbatch and Liquid Colours	Adhesion of hard/hard and hard/soft composites (TPE, VDI2019) Fiber Length Distribution (SKZ- "FiVer") Determination of fiber fractions and orientations Inline thermography for 100% component inspection (SKZ"TDI") DOE: Statistical Design of Experiments (SKZ- "MESOS")	 Practical courses Workshops Courses In-house training Master craftsman and technician training Online training Creation and provision of WBTs Individual training and further education concepts 	 Production of standard and individual test specimens Simulation of injection moulding processes (Moldex3D, SIGMASOFT) Material and mould sampling Processing of PVC and high-temperature thermoplastics Customer-specific material/mould tests On-site (process) consulting Feasibility studies 	Publicly funded projects (e.g. ZIM, IGF, BMBF) Bilateral R&D projects Research Industry Consortium Projects (SKZ Trailblazer)

View in one of our three Technical Centres

SKZ

ARBURG	Allrounder 920 S
Clamping force [kN]:	5.000
Max. dosing volume [cm³]:	792
Extras:	FDC Unit, PVC & Mixing Screw, Handling Device, High Temperature

Wittmann	Smart Power 240
Clamping force [kN]:	2.400
Max. dosing volume [cm³]:	Kompakt: 442 / TSG: 331
Extras:	TSG - CellMould, Embossing, Handling Device, Additional Injection-Aggregate

ARBURG	Allrounder 570A
Clamping force [kN]:	2.000
Max. dosing volume [cm ³]:	1. Aggregate: 149 2. Aggregate: 58
Extras:	2nd. Aggregate – vertical, handling device, high temperature

KraussMaffei	PX 160
Clamping force [kN]:	1.600
Max. dosing volume [cm ³]:	220
Extras:	Latest I4.0 interfaces incl. all peripheral devices OPC-UA connected, handling device, interchangeable units

Haitian/Zhafir	ZE 1200
Clamping force [kN]:	1.200
Max. dosing volume [cm ³]:	147
Extras:	-

Wittmann	Eco Power 110
Clamping force [kN]:	1.100
Max. dosing volume [cm ³]:	283
Extras:	Handling device

ARBURG	Allrounder 470A
Clamping force [kN]:	1.000
Max. dosing volume [cm ³]:	201
Extras:	Special screws

Wittmann	HM800
Clamping force [kN]:	800
Max. dosing volume [cm ³]:	106
Extras:	Handling equipment, special screws

Sumitomo DEMAG witer (0-0)			
	1948		
and the second s	-		-1.

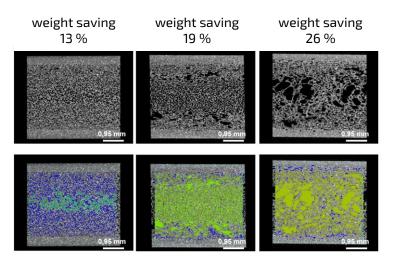
Engel	E-mac 465/100
Clamping force [kN]:	1.000
Max. dosing volume [cm³]:	214
Extras:	Handling, IQ assistance systems, flomo

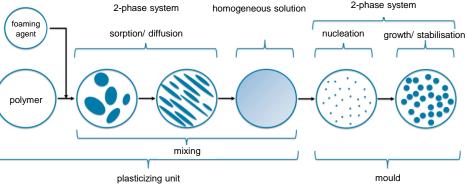
Demag	IntElec 50
Clamping force [kN]:	500
Max. dosing volume [cm³]:	20
Extras:	-

- for cross-linking polymers -

Engel	E-motion 740
Clamping force [kN]:	240
Max. dosing volume [cm ³]:	390
Extras:	Handling device, thermoset unit, IQ-Flow, IQ-Weight

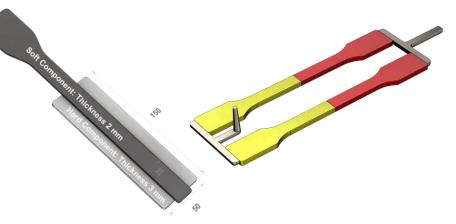
KraussMaffei	PX50
Clamping force [kN]:	500
Max. dosing volume [cm³]:	14
Extras:	LSR unit, Nexxus dosing system

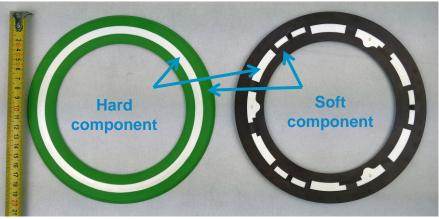

Injection Moulding Technologies


Injection Moulding Technologies: TSG – Thermoplastic - Foam Injection Moulding

Our capabilities

- The SKZ has been conducting research in the field of TSG for many years
- With our machines and moulds, we can <u>foam</u> <u>chemically and physically</u>
- Comprehensive <u>analysis options</u> are also available for the <u>characterization</u> of the component


Our offer


- Sampling of different thermoplastics regarding <u>foaming behaviour</u>
- Comparison of <u>physical foams</u> with <u>chemical</u> <u>foams</u>, with <u>microcapsules</u> or the combination physical/chemical
- Execution of <u>test series</u> with an SKZ or customer mould/component
- Qualitative and quantitative <u>assessment of the</u> <u>foam structure</u>

Injection Moulding Technologies: Multi-component injection moulding

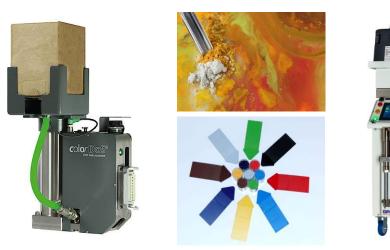
Our capabilities

- For more than 15 years, the SKZ has been investigating adhesion composites in multicomponent injection moulding
- These include <u>hard/hard- and hard/soft-</u> <u>composites</u> with TPE

(whiter) Inner ring can be individually printed

Our offer

- <u>Sampling</u> of different <u>material combinations</u>
- Test specimen production in the <u>2C process or</u> <u>insertion</u> method (cold insert)
- Execution of test series for the quantification of individual injection <u>moulding parameters</u> for composite <u>adhesion</u> (DOE)
- <u>Adhesion tests</u>, with or without bearing influence

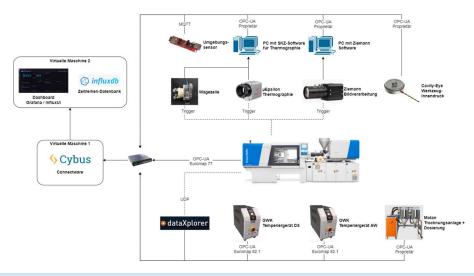

SK7

Injection Moulding Technologies: Liquid Colours & Masterbatch

Our capabilities

- The colouring and evaluation of the quality of self-coloured components has long been a focus of the SKZ
- Examples include numerous R&D projects to change colour in the process, the development of <u>in-line colorimeters</u>, and leak-free, easy-touse <u>liquid colour</u> dispensing systems together with industry

Our offer


- Sampling of <u>liquid colours and master batches</u>
- Use of <u>standard</u> and <u>special screws</u>, <u>static mixers</u> and different dosing systems as well as component geometries/surfaces
- Quantification of colour values and homogeneity, directly in the process after demoulding
- <u>Influence</u> of colour on <u>processability</u> and material <u>properties</u>

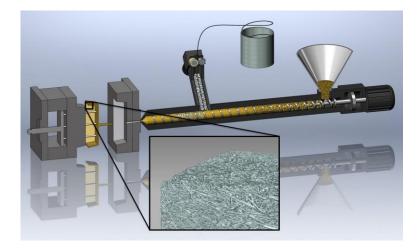
SK/

Injection Moulding Technologies: Industry 4.0 Injection Moulding Cell

Our capabilities

- Together with industrial partners, a complete <u>14.0 injection moulding cell</u> was built
- In addition to the machine, <u>all peripheral devices</u> and QA systems are <u>implemented</u>
- All operational, process and measurement data are collected and evaluated in a central database synchronously

Our offer


- <u>Advice</u> on the status and feasibility of I4.0 solutions
- <u>Use of the SKZ 14.0 injection moulding cell</u> for tests and device/interface development
- <u>Dataset creation</u> for correlation analyses or as training data for self-learning systems

Kſ

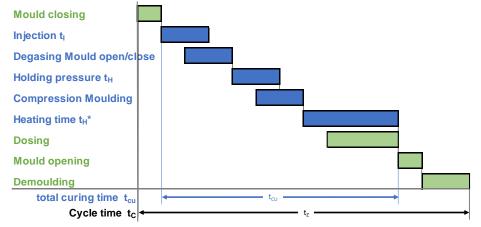
Injection Moulding Technologies: FDC – Fiber Direct Compounding

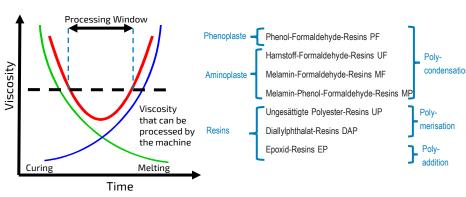
Our capabilities

- Fiber Direct Compounding (FDC) can be used to produce long-fiber-reinforced components directly from a matrix polymer and fibers without a compounding step
- The fibers are added when the polymer has already melted
- <u>Fiber damage</u> is significantly <u>reduced</u>

SK/

Our offer


- <u>Sampling</u> of different matrix polymers and/or fibers in the FDC direct process
- Using an SKZ or customer mould
- Variation of fiber content
- <u>Execution of test series</u> with different injection moulding parameters and <u>quantification of fiber</u> <u>damage</u>
- Manufacture of components for <u>process validation</u>


Injection Moulding Technologies:

Thermoset Injection Moulding

Our capabilities

- The processing of thermosets is often a challenge
- At the SKZ, thermosets are investigated in material development, analytics, simulation, mould technology and processing processes
- Machines and the corresponding peripherals are available for free-flowing moulding compounds

Out offer

- <u>Simulation</u> of thermoset components
- •• <u>*Processing*</u> of thermosets and production of test specimens
 - <u>Support</u> in mould design
 - <u>Consultancy and training</u>
 - Analysis of moulding compounds and manufactured components

Injection Moulding Technologies: LSR Injection Moulding

Our capabilities

- Processing of LSR is possible in SKZ
- System setup:
 - LSR injection moulding machine,
 - Dosing system with static mixer and the possibility of adding liquid paint and
 - Modern high-temperature temperature control devices

Our offer

- <u>Sampling of LSR materials</u>, even in small quantities by means of a "small quantity attachment"
- With SKZ or customer moulds
- Production of <u>test specimens</u> under different process conditions
- <u>Consultancy and training</u>
- <u>Simulation</u> of LSR components

SK7

Thank you for your attention

Your contact persons

SKZ – Das Kunststoff-Zentrum

 Friedrich-Bergius-Ring 22

 Fax:
 +49 931 4104 - 377

 97076 Würzburg

Christian Deubel

Industrial Service Tel: +49 931 4104 - 242 E-Mail: c.deubel@skz.de

Christoph Mussauer

Head of Injection Moulding Technical CentreTel:+49 931 4104 - 190E-Mail:c.mussauer@skz.de